1. Answer the following questions as directed:

1 \times 10 = 10

(a) Total cost \((C) = \) ______ + total variable cost \((VC)\).

(Fill in the blank)

(b) If \(C = 100 + 2Q - 5Q^2\), where \(C\) is total cost and \(Q\) is output, what is the total fixed cost?

(c) State Euler's Theorem.
(d) Given the Cobb-Douglas production function $Q = AL^\alpha K^\beta$. What do α and β indicate?

(e) In a two-person zero-sum game, a saddle point always exists. (Write True or False)

(f) Obtain the total revenue function from the following marginal revenue function:

$$MR = 100 - 0.5Q$$

where Q denotes quantity of output.

(g) Determine the marginal propensity to save from the consumption function

$$C(Y) = 50 + 0.8Y^{\frac{1}{2}}$$

where C is consumption and Y is income.

(h) What is feasible solution?

(i) Who has written The Theory of Games and Economic Behaviour?

(j) Define elasticity in terms of AR and MR.

2. Answer the following questions: $2 \times 5 = 10$

(a) Given the total cost function,

$$C = 2Q^2 + 5Q + 18$$

where Q is output level, find the output at which average cost is minimum.

(b) If the rate of investment is given by

$$I(t) = 3t^\frac{1}{2}$$

find the time path of capital formation when $k(0) = 50$.

(c) Define pure strategy and mixed strategy.

(d) Find out equilibrium national income \bar{Y} and consumption \bar{C} from the following national income model:

$$Y = C + I$$

$$C = 50 + 0.8Y$$

$$I = 100$$

where Y, C and I denote national income, consumption and investment.

(e) If $Q = \sqrt{2 + p}$ is a supply function, find the elasticity of supply with respect to price at $P = 2$.

3. Answer any four of the following questions: $5 \times 4 = 20$

(a) Show the relationship between marginal cost (MC) and average cost (AC) using the product rule of differentiation.

(b) Given two goods market models:

\[
\begin{align*}
\text{Market—I} & \\
D_1 &= S_1 \\
D_1 &= 25 - 2P_1 + P_2 \\
S_1 &= -5 + 4P_1 \\
\text{Market—II} & \\
D_2 &= S_2 \\
D_2 &= 20 + 2P_1 - 2P_2 \\
S_2 &= -10 + 5P_2 \\
\end{align*}
\]

Obtain equilibrium prices P_1 and P_2.

/154 2 [Contd.

/154 3 [P.T.O.]
(c) Give the general formulation of linear programming problem.

(d) In a perfectly competitive market, the total revenue and total cost of a firm are given by

\[TR = 12Q \quad \text{and} \quad TC = 2 + 4Q + Q^2 \]

Obtain profit maximizing output and total profit.

(e) Given the demand function \(P = 40 - 2Q^2 \), find the consumer's surplus, if free goods, \(P = 0 \).

(f) The total cost function of a firm is given by

\[C = Q^3 - 12Q^2 + 36Q + 8 \]

where \(C \) is total cost and \(Q \) is quantity of output. What is total fixed cost? Also derive the average cost function and marginal cost function.

4. Answer the following questions:

(a) A firm has the total cost function \(C = 7Q^2 + 5Q + 120 \) and demand function \(P = 180 - 0.5Q \). If a subsidy of \(\text{Rs} \) 5 per unit of output is paid by the government, find—

(i) the profit maximizing output and price;

(ii) the impact of subsidy on equilibrium output and price.

(b) Given the market model

\[D = a - bp, \quad (a, b > 0) \]
\[S = -c + dp, \quad (c, d > 0) \]
\[D = S = Q \]

where \(Q, D, S, P \) are quantity, demand, supply and price respectively and \(a, b, c, d \) are parameters.

(i) Find equilibrium price \((\bar{P})\) and equilibrium quantity \((\bar{Q})\).

(ii) Examine the effect of increase in the intercept and slope of demand curve on the equilibrium price and quantity.

Or

The sales revenue function of a firm is given by

\[R = 18L + 24M + 10ML - 5M^2 - 8L^2 \]

where \(R, L \) and \(M \) denote revenue, labour and machine respectively. Determine the amount of machines and labour needed to maximize revenue of the firm.

(c) A monopolist discriminates prices in two markets of its product and his
average revenue \((AR)\) and total cost \((C)\) functions are given by

\[
AR_1 = 60 - 4Q_1 \\
AR_2 = 42 - 3Q_2
\]

where \(Q_1\) and \(Q_2\) are the outputs of first and second markets and the total cost function is given by

\[
C = 50 + 12Q, \text{ where } Q = Q_1 + Q_2
\]

Find profit maximizing output, prices and maximum profit.

Or

(i) Define the term ‘player’ in the game theory. Solve the following game where the pay-off matrix of firm A is given below:

<table>
<thead>
<tr>
<th></th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>0</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>(A_3)</td>
<td>1</td>
<td>5</td>
<td>-1</td>
</tr>
</tbody>
</table>

(ii) In Domar growth model, the equilibrium condition requires that capacity creation should be equal to income generation and is given by

\[
\frac{dI}{dt} = p \frac{dK}{dt}
\]

Find out the time path of investment.

(d) Solve the following linear programming problem by graphic method:

Maximize \(\pi = 4x_1 + 3x_2\)

subject to

\[
x_1 + x_2 \leq 4 \\
2x_1 + x_2 \leq 6
\]

and \(x_1 \geq 0\) and \(x_2 \geq 0\)

Or

Write short notes on ‘two-person zero-sum game’ and ‘non-zero-sum games’.

\[\text{Contd.}\]